Dr.Abrar Al-Badr

M.B.Ch.B FIBMS (Chem.Path.)

It's a family of genetic disorders caused by production of a structurally abnormal hemoglobin molecule, synthesis of insufficient quantities of normal hemoglobin or both.

- So, abnormalities occur in:
- Structure of the globin chain (ex: sickle cell disease).
- Globin chain production (ex: thalassaemia).

Sickle Cell Anemia

The sickle cell disease is a type of hemolytic anemia caused by a single base mutation (point mutation) in the β -globin gene that changes the sixth amino acid from glutamic acid to valine.

Classification of sickle cell disease

Sickle cell anemia (SS)

 Homozygous state—both β-globin chains are abnormal/defective.

Sickle cell trait (AS)

 Heterozygous state—one gene allele is defective (for HbS) and while the other gene allele is normal (for HbA).

Pathogenesis

When HbS is deoxygenated, the molecules of haemoglobin polymerise to form pseudocrystalline structures known as 'tactoids'. These distort the red cell membrane and produce characteristic sickle-shaped cells.

Clinical features

The disease usually does not manifest itself until the 6 months of age. irreversibly sickled cells have a shortened survival and plug vessels in the microcirculation.

Vaso-occlusive crisis

Plugging of small vessels in the bone produces acute severe bone pain. This affects areas of active marrow: the hands and feet in children (called dactylitis) or the femur, humerus, ribs, pelvis and vertebrae in adults.

Investigations

- ❖ Hb (6-8 g/dl)
- ❖ Blood film (sickle cells and increase in reticulocyte count to 10-20%)
- Sickle solubility test.

A mixture of HbS in a reducing solution such as sodiumdithionite gives a turbid appearance because of precipitation of HbS, where as normal HbA gives a clear solution.

- Hb electrophoresis (the definitive diagnosis):
 - -No HbA band and predominance of HbS (homozygote).
 - -HbA and HbS bands (sickle cell trait) (heterozygote).

Treatment

- All patients with sickle-cell disease should receive prophylaxis with daily folic acid.
- Vaso-occlusive crises are managed by aggressive rehydration, oxygen therapy, adequate analgesia and antibiotics.
- Regular Transfusion to suppress HbS , for patient with recurrent severe complications

Thalassemias

They are hereditary haemolytic diseases in which there is a reduced rate of production of one or more of the globin chains of Hb. This basic defect results in imbalanced globin chain synthesis

Classification

Thalassemia is classified according to which globin chain is produced in reduced amounts into:

α-thalassemia

It results from deletion of one or more of the four gene alleles coding for the α globin chain in Hb.

Clinical syndromes associated with α -thalassemia

Clinical syndrome	No . of α-globin genes deleted	Clinicopathological features
Silent carrier state	1	A symptomatic
α-thalassemia trait	2	Usually a symptomatic, Normal Hb or minimal anemia.
Hemoglobin H disease	3	Moderate anemia
Hydrops fetalis	4	Severe form ,fatal and usually results in intrauterine death.

β-thalassemia

Point mutation in the β globin gene resulting in reduced or absent synthesis of β globin chain , it's the most common type of thalassemia.

The β -thalassemias can be classified ,clinically, into three groups:

- Thalassemia minor: if one gene is affected, the person is a carrier and has mild anemia.
- Thalassemia intermedia: patients with thalassemia intermedia have varying effect of the disease, mild anemia maybe their only symptom or they may need regular blood transfusions.
- Thalassemia major: is the most severe form of β thalassemia. It develops when β globin genes are missing.

Clinical features of **\beta**-thalassemia major

- Patient presents within the first year of life with failure to grow, poor feeding ,recurrent attacks of infection .
- On examination: the patient is pale, jaundiced with hepatosplenomegaly.

Investigations

- ❖ Hb 2-8 g/dl
- ❖ Blood film: microcytic hypochromic anemia with reticulocytosis.
- ❖ Hb Electrophoresis: The HbF level is always elevated, In thalassemia major: only HbF and HbA2 (no HbA1).
- ❖ HPLC (High Performance Liquid Chromatography) is used to separate and quantify various normal and abnormal Hb.

Treatment

α thalassemia

- No treatment needed for α thalassemia trait
- Transfusion for Hemoglobin H disease.

β thalassemia

- No treatment is needed for β thalassemia minor
- Transfusion/ bone marrow transplantation for β thalassemia major.